Ultra-cold fermions in optical lattices
نویسندگان
چکیده
We summarize recent theoretical results for the signatures of strongly correlated ultra-cold fermions in optical lattices. In particular, we focus on collective mode calculations, where a sharp decrease in collective mode frequency is predicted at the onset of the Mott metal–insulator transition; and correlation functions at finite temperature, where we employ a new exact technique that applies the stochastic gauge technique with a Gaussian operator basis.
منابع مشابه
UNSPECIFIED Possible critical behavior driven by the confining potential in optical lattices with ultra-cold fermions
A recent paper [V.L. Campo, et al., Phys. Rev. Lett. 99 (2007) 240403] has proposed a two-parameter scaling method to determine the phase diagram of the fermionic Hubbard model from optical lattice experiments. Motivated by this proposal, we investigate in more detail the behavior of the ground-state energy per site as a function of trap size (L) and confining potential (VðxÞ 1⁄4 tðx=LÞ) in the...
متن کاملDynamical Mean-field Theory for Correlated Lattice Fermions
Dynamical mean-field theory (DMFT) is a successful method to investigate interacting lattice fermions. In these lecture notes we present an introduction into the DMFT for lattice fermions with interaction, disorder and external inhomogeneous potentials. This formulation is applicable to electrons in solids and to cold fermionic atoms in optical lattices. We review here our investigations of the...
متن کاملOne-dimensional topological chains with Majorana fermions in two-dimensional nontopological optical lattices
The recent experimental realization of one-dimensional (1D) equal Rashba-Dresselhaus spin-orbit coupling (ERD-SOC) for cold atoms provides a disorder-free and highly controllable platform for the implementation and observation of Majorana fermions (MFs), analogous to the broadly studied solid-state nanowire-superconductor heterostructures. However, the corresponding 1D chains of cold atoms poss...
متن کاملNon-Abelian optical lattices: anomalous quantum Hall effect and Dirac fermions.
We study the properties of an ultracold Fermi gas loaded in an optical square lattice and subjected to an external and classical non-Abelian gauge field. We show that this system can be exploited as an optical analogue of relativistic quantum electrodynamics, offering a remarkable route to access the exotic properties of massless Dirac fermions with cold atoms experiments. In particular, we sho...
متن کاملAtomic fermi-bose mixtures in inhomogeneous and random lattices: from fermi glass to quantum spin glass and quantum percolation.
We investigate strongly interacting atomic Fermi-Bose mixtures in inhomogeneous and random optical lattices. We derive an effective Hamiltonian for the system and discuss its low temperature physics. We demonstrate the possibility of controlling the interactions at local level in inhomogeneous but regular lattices. Such a control leads to the achievement of Fermi glass, quantum Fermi spin-glass...
متن کامل